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SUMMARY

The objective of the program's second year research work was
to examine the validity of the constant probability crack growth model
while refining the transition intensity parameter. This work has been
completed, thus leading to a crack growth rate equation with an explicit
probability term. Furthermore, work extending the applicability of
the model to variable loading required the determination of the delay-
time associated with a single overload. An experimental test program
was carried out on a titanium alloy using a potential drop technique
to record crack length increments as function of overload characteristics.
This program has been completed and results will be incorporated into

the basic stochastic model.



2. REPORT
Details of the research efforts and status of the research are
described in the attached two papers. One was published by the J. Eng.

Fracture Mechanics and the second has been accepted for publication.

3. PERSONNEL ASSOCIATED WITH THE RESEARCH EFFORTS

Mr. Peter Neilans
Research Engineer

Mr, V. Agrawal
degree: Master of Science

Mr. D. Zheng

degree: Ph.D. -
expected date: July 1990

4. INTERACTIONS

1. A paper entitled "Cczstant-Probability Crack Growth Curves"
was presented at the 20th National Symposium on Fracture
Mechanics, Lehigh University, 23-25 June 1987.

2, An invitation was extended by Professor A. Pineau of
Ecole des Mines to deliver a lecture on the stochastic crack

growth modelling., The date of the seminar is October 14, 1987.
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Constant-Probability Crack Growth Curves
H. Ghonem
Mechanics of S$olids Laboratory
Department of Mechanical Engineering and Applied Mechanies

University of Rhode Island, Kingston, RI 02881, USA

Abstract

This paper details a stochastic, time-inhomogeneous model
that serves as a theoretical basis for the prediction of crack
growth and 1ts variability under constant-amplitude loading.
Crack evolution i1s described :{S a set of constant probability
curves, each of whose points possess equal probability of
advancing from one position to another forward position. This
probabillity is governed by a transition intensity parameter for
which two mathematical interpretations are examined. A
simplified crack growth rate equation, employing one of the
definitions, is derived and applied to A17075-T6 material for
different loading conditions. Results of this application are

compared with those experimentally obtained.

Introduction
The work of Ghonem et al (1,2) describes a probablilistic
crack growth model based on the assumption that fracture history
can be established by employing a particular discontinuous
Markovian process which takes into account the fundamental
aspects of the crack growth mechanism. This approach leads to

the description of the sample curve of the crack growth process



in terms of a constant-probability criterion. When considering
that the crack growth curve given by any continuum crack growth
model coincides with the median growth curve, the probabilistic
model would then be sufficient to describe the evolution of the
crack length and associated scatter at any stress level (3,4).
The present paper 1s an attempt to extend the concepts of the
model by including a different definition for the transition
intensity probability of the growth process. This will lead to
the derivation of a simple and explicit probabilistic crack
growth rate equation similar in structure to the Paris-Erdogan
equation.

The first part of the paper focuses on the constant
probability crack growth curve concept and its model derivation,
while the second part will deal with the application of the

proposed law,

Model

The basic model is based on the assumption the crack front
in the crack propagation stage, as shown in Figure 1, can be
approximated by a large number M of arbitrarily chosen points a,
a=l,.cc00e0...,M. Each of these points in terms of the theory of
probabllity, 1dentifies a statistical "trial" or "experiment"
conductaed under identical conditions. The fracture state of the
ath trial at cycle "1i" is given by the crack length or random
variable ®ay; (x;,xp,x3) whosc evolution with time shall then be
established.

The following observations can be made regarding ®ajy:



1- the evolution of ®a; in the x;, x2 and x3 directions
are statistically independent of each other.

2- the statistical evolution of ®ajy (x3) 1s different
from those of %aj (xp) and %ajy (x3) in that
the former consistently increases while the latter may
be described as a type of random~walk phenomenon.

3- for an external load applied in the x3 direction, the
crack evolution in the x2 asnd x3 directions are orders
of a lesser magnitude than that in the x3; direction.

On the basis of these obsesrvations this model is limited to
the evolution of ®a; (x;) by assuming that the crack growth
distributions of ®ay (xp) and %ajy (x3) can be described by
Dirac-Delta functions. So, ®ajy will hereafter be referred to
as aj.

Due to the built-in limitations of all experimental
techniques in crack measurement, the observed value of aj; can

only be specified within a range of:

X < ay <x + Ax

where Ax 1s the experimental error and x is the crack position

calculated as (see Fig. 2):

X = r Ax ; ro <r <rg (1)

Here "pr" identifies the observable zone or state along the

fracture surface; ro, is the initial propagation state, rgr 1is the



state just prior to catastrophic failure of the specimen and r;,
P2yecssecssesy Pp-] are the intermediate zones, all zones having
the same width.

Given that the crack is in state r, then after 1 cycles fronm
the instant of reaching r, one of two events will occur. E{ither
aj will remain in state r (event TEjy) or aj will not be in
state r (event SEj). The following points should now be noted.

a) The crack propagation process is irreversible (i.e.

there is no rewelding of crack surfaces.) Hence the

crack, If it is not in state r after i cycles, must

exlst in a state greater than r.

b) Since 't is not possible for the crack to propagate

from one state to another state without penetrating

the adjacent one, the crack can be identified by the

number of cycles (1) required to advance from a given.

state to the immediately following state.
Based on these observations, events TE;y and SE; can be seen
as elements of a measurable space () (see Reference (3)) and the
following definition of the probability megsure of ajy becomes
possible. At any fatigue cycle i, the probability that aj; is in

state r, 1.e. the probability of FEj, is defined as:

Pla; € TEg} = P{x < aj < x+ax} (2)

f.e. P(TEy) = Pp(1) (3)



Therefore, the probability of aj not falling within r, i.e. the

probability of SE; is,
P(SEy) = 1 - Pp(1) (%)

It can be seen that, Ppr(1i) should continuously decrease as the
number of cycles increases. Before proceeding further to
identify the parameters that define Pnp(l), it is necessary to
make these comments.

Under conditions of constant amplitude loading, where no
overloading effects are considered, the érowth of a crack from a
particular state depends only on its present mechanical and
microstructural details. More specifically, the probability of
ajy propagating from state r to r+l in the cycle interval (i,
1+A1) depends on the event (PEi) and 1ls independent of the
events prior to i, (FEj, J<i). to elaborate, let (F*1E;) be the
event or‘ai jumping to (r+l) from r in the interval (1, 1+Ai).
This represents a future event if (FEj) is an event in the
present. Clearly, the future event 1is conditional on the
occurrence of the present event. Given that the present has
occurred, the probabﬁ#ility of the future is not affected by the
probabllity of the occurrence of the past (PEJ, J<1). Also,
the occurrence of (FEj) precludes the occurrence of the (SEJ,
j<i, s>r) due to the irreversible nature of the crack growth
process.

The above feature is similar to that of a pure btth

Markovian process in which the future 1s determined only by the



present and not by the past, and in which the disprete space
variable never decreases in magnitude with increase of time. This
analogy helps to define a transition probability that is also a
Markovian property and introduce the conditional probability

function that governs the crack growth process as:

P{P*l

P{" ', / rEi,...,rEJ,...PEO} - E st/ "E}

- Prt(i) - | (5)

where Ppre (1) is the transition probability linking the
probability measures of two consecutive states "r"™ and "t" (t =
r+l) along the fracture surface and "/" denotes the conditional
probability. This property, together with the evolution of ajy
within the two event sample space (f), describes a discrete space
continuous time Markov process.

Since the apalogy to the Markovian process has been shown,
the criteria attached to thils process can be assumed to be valid
for the crack growth as well.

They are:

1- The probability aj propagating to a state different

from r in Al cycles, where Al is very small, after

i cycles elapse Iin state r is:

Pg(ai) = P{YE a1 7/ TE;} +0(a1)

= Ap AL + 0(AL); t=r+l (6)

Here, Ap 1s a positive variable indicating the



Now,

let

probability transition rate. It describes the
transition rate from state r to r+¢l In |

cycles.

In this analysis, Ap 1s assumed to be a material
parameter which in addition to being a function of
crack position r, should depend explicitly on both
initial cycle 1, and duration Ai. The propagation
process thus becomes time~-inhomogeneous,

The corresponding probability that aj will be 1in state

r during the cycle interval Al is:

Pr(a1) = P{TE,y 7/ TEg} + 0(al)

= (1 - ap A1) + 0(a1) (7)

The probability that aj is in a state different from

r+l is:

Prg(al) = P{YE,y 7/ TEy}

= 0(al) i tor+l (8)

The time interval Al is so small that the probabdbility
of advancing from r to a state greater than r+l

is almost zero. By definition, 0(Ai) is such that,

Lt 0(ai)
Al1-+0 Al




A =~ TE; and

B = r'EM‘
Then
AN B =TEj4a4
Since
P(A N1 B) = P(B/A) . P(A)
Therefore
P{TEjsp1} = P{TEpy 7 TEy} « P{TE4} (9)

Substituting Equations (6), (7) and (8) in (9) we get,

P{PEjsps} = (1 - ap 81) « P{TE;} + 0(al) (10)

which can be written as

Pp(i+a1) = (1-apAl) - Pp(1) +0(A1) (11)

By transposing the term Pn(i), dividing by Ai and passing to the

limit A1+0 , equation (11) becomes

dPr(i)

di = Ar Pp(i) (12)

The solution of this equation is:

tn Pp(i) = = [ap di + Ly (13)



where L 1s a constant.

This equation describes the crack growth probability from state
r, after 1 cycles elapse, in terms of the constant L; and the
transition rate A, which is discussed below.

The parameter A, was introduced in this model as the
transition intensity by which aj propagates from one state to the
next. Adopting the notion that the crack growth process 1is a
discrete one, the crack transition from a specific state can be
viewed as being governed by a critical threshold energy at the
erack tip. When such a threshold (which is environmental,
material, stress and crack-length dependent) is satisfied by
cyclic energy accumulation, a crack tip trandition can be said to
occur. Therefore the larger the cycle duration associated with
the crack in a specific state, the greater the probabllity that
the propagation threshold is satisfied and the greater the
probability that the crack advances to the following state.

The transition intensity, Ap, can be assumed to have several
physical interpretations, however, the primary concern at this
point is whether A, is a material property present only when
there is application of cyclic loads or whether it exists even
when there is no cyecling.

If xp 18 a property that owes its existence to cyclic
loading, then it could represent a dislocation accumulation rate,
a microvoid growth rate, a ductility exhaustion rate or a rate at
which any physical phenomenon occurs in the grain structure of a
polycrystalline material to aid the propagation of a crack. 1In

that case, the magnitude of Ap should be zero at any instant



there 18 no cycling. Specifically, its magnitude should be equal
to zero at 1=0, the instant at which the load cycling is about to
begin, after the crack has reached a particular state, r.
Keeping in mind the fact that A, should monotonically increase

with 1, the following expression for Ap can then be chosen.
Ap(1) = L(r) ga(r) (14)

where L(r) and a(r) are functions of the crack state.

If, on the other hand, A, 1s a property present even when
there is no cyclic loading, the physical analogy for A, would be
completely different. Ap would then represent a dislocation
density 1in the microstructure or a microvoid density in the
microstructure of a material. Thus while the property A, does
increase in magnitude during cycling, it does not cease to exist
when the cycling is absent. Hence, from this point of view, Ap
should have a value corresponding to 1=0, the Instant at which
the cycling is about to begin after the crack has reached a
specified state, r. The following expression could then be

considered.
Ap = L(r) ea(r)t (15)

From a purely mathematical point of view expression (15) was
first selected to be utilized in the present model. By

substituting Equation (15) in (13), 1t ylelds:



tnPp(1) = - B eC1l + Ly (16)

where B = L/C

The upper and lower limits of Pn(1) in the above equation are:
1 > Pp(l) >0 (17)

The form of equation (15) suggests that i1 has a lower boundary
that satisfies the upper limit condition of Pn(i). Equation (16)

thus becomes:

Ci

1In P (1) = B(e“l0 - %) 1> I,

= 0 1 < I, (18)

where the parameters B, C and I,, the incubation time, are found

to be:
2y
B = Cl a, ; (19)
Pl (20)
2 ar
3 3
and I, = Cg (a2, - a.”] (21)

Cyis Co, C3, ny, np and n3 are material-, stress- and
environment-dependent parameters,
The application of the above equation (18) to different

steel and aluminum alloys is detailed in Ref. (3).



In this paper the interpretation concerning Ap, as given in
Equation (14), will be examined. By substituting this equation

in (13) and setting the upper and lower limits of Pp(i) to:

1>Pp(l) >0

one can arrive at the following solution

AL = A(-1n P,.(i)‘)3 (22)
1
wnere A = (l:a)1+°
and g = lia

A and B are considered here to be material-, stress- and crack
position dependents.

The above equation ildentifies the duration of fatigue cycles
required for a crack at position r to propagate with a specific
constant probability Pp({), to a position r+l along the fracture
surface. By calculating such durations for states ry to re-1,
the history of the entire constant-probability crack growth curve
can be obtained. If an assumption is made that the crack growth
curve generated by a continuum model coincides with the median
growth curve, i.e., the Pp(i) = 0.5 curve, parameters A and B8 can
be determined and Equation (22) becomes fully defined for a
particular material and a particular constant amplitude stress
condition. The work described below explains the procedure for

determining the expressions of both A and 8.



Following the approach detailed in Ref (3), work of
Virckler et al (5), which combines crack growth data of 68
replicate tests of Al12024-T3, shown in Figure 3(a) was arranged
in 9 constant probability crack growth curves as shown in Figure
3(b). Data points representing cycle intervals corresponding to
similar discrete crack positions along three different
constant-probability curves; Pn(i) = 0.05, 0.5 and 0.95, were
used as input to Equation (22) to determine the parameters A and
B. Using curve regression analysis parameter g was found to be
constant for all state positions with a value of 0.166. The
parameter A varied as function of r in a pattern shown in Flgure

3 which is fitted into the form:

A = 1.5 x 107 ((r-1)"1 - p°1) (23)
Similarly, data of Yang et al (6), Figure (4), which consist of
the distribution of crack size as function of load cycles for
IN-100 tested for two different load conditions, were used to
obtain the expressions for A and 8. These expressions were
obtained as:

Test Condition I

A = 4,3x100 ((r-1)"0.70 - ,-0.7)

g = 0.155 (24)

Test Condition II



A = 4§,06x106 ((r-1)"1.4 - p-1.4)

B = 0.266 (25)

By observing the forms of A and B, as expressed Iin Equations
23-25, obtained from two different types of alloys, one can
conclude that, while B seems to be a constant which depends
mainly on the material and afress condition, a general form of A

depends on the crack position and can be written as:
A = Ci((r-1)Y = pY)

where C; and Y are material- and stres-dependent parameters.

Therefore, one can write Equation (21) as:

a1 = ¢ ((r-1)7 = rYy(-1mp (1))®

C
= —57 [AxY(r - 1)Y - AerY](-lnP)B (26)

Ax
since the crack length ap can be written as a, = 4x-r, thus,

Equation (26) becomes

Al = C.(a’

ST ST B
sla,_y - a )(-1nP) (27)

where Co = C3/AxY. One should remember here that Al is the
number of cycles counted from the instant the crack tip reaches
state r and P is the probability that the crack will not

propagate from state r to the following state within Al cycles.



For the same value of Pnp(1), 1.e. operating on a single crack

growth curve, Equation (27) can be manipulated as follows:
- - Y _ : B
Ail 11 0 Cz(ao a, )(-1nP)
where a, is a constant that represents the initial crack length.

- - A Yy, B
A12 12 11 02(a1 ar)( 1nP)

g - cY = A= B
AL, = 1., 1. Cz(ar_l ar)( 1nP)

By summing Ai;+Aip + ... + Alp, One obtains

: =~ LN B
ir Cz(ao ar)( 1nP)

Differentiating both ends w.r.t. i; thus:
Y-1 da

1 I da - B
J C2 (-y a, 91 )(~1nP)

This é@eyuation can be rearranged as:

da _ § ,_ -8
i1 C3 a (-1n P) (28)
-1
where C3 = E;f;

and § =1 -~Y



By multiplying and dividing Equation (28) with 4026 #6; where

Ao 1s the stress range, one can obtain:

"—‘; = C 2028 «% a® (- 1n p)8 (29)

where C = C3/4028 58

Equation (29) could then be written as:

d

o

- c,‘(mc)‘s (-1n P) B (30)

Q.

1

which represents a crack growth rate equation for a crack
progressing from one state to the following state along the
fracture surface with a constant probability P.

From the experimental work of Yang et al (5) and Ghonem and
Dore (3), 1t is observed that the degree of scattaer of the
constant probability curves measured as the number of cycles that
separates the Pno(1) = 0.95 curve from the one of Pnp(1) = 0.05 at
the same crack length decreases as the maximum applied stress,
Smax» lncreases. One can assume that, at very high values of
Smaxs, the influence of the material microstructure and other test
conditions would decrease to the extent that all probability
crack-growth-rate curves would be described by a single curve.
At this loading level, paramter B8 is equal zero, i.e. B follows a

pattern which can be simply expressed as:

B = Sy - BoSmax (31)



where B, is a constant and S, 1s related to the maximum stress
value at which all probability crack growth curves become one

curve. Equation (30) could be written as:

S -B.S

a o] O max (32)

d §
an - CL (Ak)~ (=1n P)

As mentioned before a basic assumption in the work of Ref.
(2) is that the median of the constant probability crack growth
equation, {.e., the curve with Pn(i1) = 0.5, can be described
using a continuum crack growth law, By invoking this assumption
the validity of Equation (30) could be examined using results of
tests carried out on Al T7075-T6 specimens (3). In this work the
crack length versus number-of-cycles was obtained for three
different stress conditions. Each condition was tested by using
sixty identical center-notched flat specimens (320.67 x 50.8 x
3.175 mm) resulting in sixty crack-growth curves, each consisting
of 256 points generated through the use of an automated
photographic technique detailed in Ref (3). The results of this
study and the corresponding experimental constant probabllity
crack growth curves are shown in Figures 5-8, Following an
argument discussed in the above mentioned study, Forman's
Equation (6) was selected as a suitable continuum crack-growth
law since 1t recognizes the effect of the stress ratio R and is

well documented for Al17075-T6; it is written as



m
a C AK

_—a — > (33)
i (1 R)(Kc Kmax)

Q

where

Ke = 74 MPa-m¥

C = 1.63 x 1017

m = 3,065

The results of the comparison of this equation with those
experimentally obtained for Pnr(i) = 0.5 are shown in Figure 9;
they indicated close agreement.

The above equation could now be equated to Equation (30) in
which PL(1) = 0.5. In this equality the parameter § 1s set equal
to m of Formann equation, i.e., 6§ = 3.065. Using an iterative
numerical te-hnique that employs the Newton-Raphston method,

values of Cy and B for the three different load conditions were

obtained:

test condition I test condition II test condition III
C, 2.64x10" 4 1.65x10” 4 1.42x10"4
] 0.195 0.203 0.299

The parameters Cy and B were then substituted 1n Equation (30)

to generate, for each load condition, the entire spectrum of the



constant probabllity crack growth rate curves. These curves were
compared to those experimentally obtained in Figure 8. Results
of this comparison, in the form of percentage-of-error of
number~-of-cycles corresponding to a similar crack length, are
summarized in Figures 10. These results show that the error of
the model under test conditions I, II and III are :12.5%, +5% and
+8% respectively., This degree of error is similar to that
obtained when A, 1s expressed by equation (15), see Ref. (3).
Furthermore, a comparison between both the theoretical and
experimental cumulative distribution function for selected crack
lengths, at the three ﬁirferent loading conditions, are shown in

Figure 11; they indicate a very close agreement.

Summary

This paper has outlined the principle of a str "astic model
almed at describing crack growth and its variability due to
random characteristics of the microstructure of polycrystalline
solids. The model was built by developing an analogy to a
discontinuous Markovian process. This treatment leads to the
calculation of the cycle duration required for a point along the
crack tip to advance with a particular probabilitv to a forward
state along the fracture surface. This probability is governed
by a transition intensity parameter, Ap, which is viewed here as
material- and cycle~-dependent, In the absence of a definite
physical interpretation of thils parameter, it has been given two
mathematical expressions which differ in that one expression, ip,

possesses a value when Al approaches zero, while in the other



expression A, becomes zero as Ai+0. The paper examined the

latter condition which then led to the derivation of a crack

growth rate equation in which a probability term 1s explicit.

Comparison of the results of this equation, when applied to

A17075-T6 for three different loading conditions, indicates

agreement with experimental results obtained by the author for

the same loading conditions.
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EXPERIMENTAL STUDY OF THE CONSTANT-
PROBABILITY CRACK GROWTH CURVES UNDER
CONSTANT AMPLITUDE LOADING

H. GHONEM AND S. DORE
Mechanics of Solids Laboratory, Department of Mechanical Engineering and Applied Mechanics,
University of Rhode Island, Kingston, RI 02881, U.S.A.

Abstract — This paper is concerned with the application of a mathematical model that describes
the fatigue crack growth evolution and associated scatter in polycrystalline solids. The model has
been built on the basis that an analogy exists between a particular discontinuous Markovian
stochastic process, namely the general pure birth process, and the crack propagation process. The,
crack evolution and scatter were then defined in terms of material, stress and crack-length dependent
propertics and crack tip incubation time.

The application of the model is carried out by comparing the constant-probability crack
growth curves generated for three different load levels with those obtained from testing sixty Al
7075-T6 specimens for each load level. A photographic method was utilized to measure the crack-
length in this test program, by recording the residual deformation that accompanies the flanks of
the crack during propagation.

INTRODUCTION

PREDICTION OF fatigue crack growth, even under constant amplitude loading, has not been an easy
task. This is mainly because the manner in which the various parameters, such as loads, material
properties and crack geometries, affect the crack propagation is not clearly understood[1]. This,
consequently, had led to a proliferation of hypotheses and laws for describing fatigue crack
propagation (see review articles in refs [1, 2 and 3]). Most of these models are based on concepts
of the continuum theory with the assumption that cracks propagate in an ideal continuum media.
Actual metallic materials, however, are composed of random microstructure described by various
microparameters which can seriously affect the growth of a crack in these materials. As a result,
the deterministic theories can only be accepted as an approximation of the actual random fatigue
crack propagation process.

The use of statistical distributions or probabilistic models thus becomes necessary to make
predictions of crack growth more reliable. The search for the “true” statistical distribution has
been a difficult task since in any application, the amount of crack-growth data which has been
collected for any particular case would not be sufficient to discriminate between the different types
of distributions[4]. In addition, when a series of tests on identical specimens is performed to
establish the scatter due to material properties, the uncertainties in load values and crack-length
measurements are also included in the scatter data. Due to this limitation, it is difficult to isolate
the scatter associated with material properties in any experiment. One is also hampered by the
lack of an exact physical description of the fatigue process[5]. When taking these two factors into
consideration, any probabilistic or statistical model can identify the variability of crack-length
only in a comparative sense. This means that the absolute values of the variability at a specific
load level predicted by a model may not be equal to those obtained experimentally. However, it
is possible for a ratio of variabilities predicted for two different load conditions to be equal to
that of the experimental results obtained at the same loading conditions. In this, the experimental
errors being independent of the magnitude of the applied loads, are eliminated.

There are basically two kinds of mathematical models in existence to predict the variability
in fatigue crack growth. The first employs a statistical approach in which random variables are
introduced instead of the constants in the appropriate deterministic crack growth equation. While
these models (see, for example refs [6-11]) are simple to use and versatile in application, they
possess some disadvantages. First, all of them are based on Paris law[12] where it has been shown
that other laws like the Forman's law[13] are more applicable. Secondly, the scatter parameters
in these models have no physical description and no attempts have been made to link these
parameters to the micro-structural properties Lastly, though these models generate crack-growth
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data that match the experimental data reasonably well in some cases, they do not provide any
insight into the nature of the fatigue crack propagation process.

The second approach employs evolutionary methods in which the propagation of the crack
is treated in a probabilistic or stochastic sense instead of a statistical one. Making use of a specific
probability process, namely the Markovian process, the models with this approach strive to
correlate the properties of this process with those of fatigue crack propagation.

Examples of this approach are the models by Ghonem et al.[ 14, 15], Kozin and Bogdanofi[ 16]
and Aoki and Sakata[17]. The major disadvantage in using these models is the lack of crack-
growth scatter data for different conditions which would have been helpful to check the validity
of the probabilistic assumptions on which these models were built.

The objective of this paper is to examine the results of the ztochastic model developed by
Ghonem and Dore{15] when utilized for the prediction of the crack growth evolution, in the same
material, at different loading conditions. Before proceeding on this application, a brief review of
the fundamentals of the model is presented in the next section. This will be followed by the
description of the experimental study and detailed analysis of the results.

REVIEW OF THE PROPOSED MODEL

In this model, the fracture surface is divided into a finite number of crack “states™ of equal
width; a probability space of two events was defined with the condition that the crack is in state
“r” after i cycles have elapsed from the instant of reaching “r”’. They are, the event that the crack
will remain in the state “r’’ and the event that the crack will not be in ‘r”. Assuming that the
crack propagation process is irreversible and utilizing the fact that under conditions of constant
amplitude loading the existence of a crack at a particular state depends only on its present
mechanical and microstructural details, a definition for the transition probability was arrived at.
Using the criteria attached to the discontinuous Markovian process[18], a transition intensity (4,)
could be defined. In this approach, 4 is assumed to be a material parameter which in addition to
being a function of the crack position “r”, should explicitly depend on both the initial elapsed
cycles i/ and the incremental duration Ai. The propagation process thus becomes time-
inhomogeneous. This characteristic is a departure from the works of Ghonem and Provan[14]

and Kozin and Bogdanofi[16].
The probability equation was then derived ard can be written as:

In P,(i) = B(ekb — eX) ; 21, 1)
=0 ;i< Io

where i is the number of cycles, B and K are crack-length and stress dependent variables, P,(i) is
the probability of the crack being at a state *r” on the fracture surface after i cycles elapse and
I, is the minimum number of cycles required for the crack to advance from one position on the
fracture surface to the next and is also crack-length and stress dependent.

This derivation was made by defining the transition intensity 4, and the Incubation time J;
in the following form.

A = l%e"f 2
Iy = Cyl(r — 1y° = r| 3

where @)
B=Crt 5
K=Crm

and C,, C,, Gy, ny, n, and n, are material, applied stress and environment dependent parameters.
These functions (eqs 2 and 3) were verified with the available crack growth scatter data based on
the works of Virkler er al.[19] and Yang et al.[6].
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As can be seen, identification of the six constants is sufficient to define eq. (1) at any crack
position so as to calculate the associated number of cycles elapsed for any probability (P,(i)) value.
Carrying out this operation for a given probability value at all the crack states in a cumulative
manner, will generate a crack-position versus number-of-cycles curve representing the probability
with which a crack spends a certain number of cycles at any state.

Here, one should observe that the constants in these mathematical functions can be calculated
by considering the crack growth curve obtained by using a continuum equation as being the
P,i) = 0.5 curve. This can be done numerically, and the crack growth scatter at any crack length
and at any fatigue load can be defined without the need to perform large number of fatigue tests.
As mentioned before, the results of the model, when applied to Al 2024-T3 that was
subjected to load cycles of constant amplitude, were in agreement with those experimentally
obtained with the average error in the theoretical curves estimated to be 5%.

In order for the model to have a wider scope of application, it has to be substantiated for
different loading conditions and for different materials. The first step in that direction is the
verification of the model for different loading conditions on the same polycrystalline material. The
experimental set-up and procedure used for this purpose are described in the next section.

DESCRIPTION OF THE EXPERIMENTAL SET-UP

Tests were conducted on Aluminium 7075-T6 alloy and crack-length versus number of cycles
data were collected at three different stress ievels. Each level was tested by using 60 identical
specimens to establish the degree of crack-length scatter during propagation.

A rectangular specimen (320 mm x 101 mm) with a thickness of 3.175 mm and a center-
cracked tension geometry was used throughout the test program. The direction of the center-crack
chosen was perpendicular to the rolling direction of the sheet from which the specimens were cut
as shown in Fig. 1. The dimensions of the specimen and the crack initiating notch are based on
the ASTM E647 recomthendations and are shown in Figs 2 and 3 respectively. The specimen ends
were fixed to the test system by flat end grips whose dimensions are also based on the ASTM
E647 recommendations.

A study was carried out to compare the available crack-length measuring techniques namely,

(a) The Photographic Technique,
(b) The Drop Potential Method,
{(c) The Mechanical Method,

(d) The Electrical Technique,

(e) The Acoustic Method,

(f) The Ultrasonic Method and
(g) The Visual Method.

The results of this study, based on refs [20, 21 and 22] are detailed in ref. [23]. The conclusion
was that the method of photographing the crack during propagation was the one most suited for
the present program, since it is capable of tracing the growth of one point along the crack-front
as opposed to a technique that measures the average position of the crack front.

The photographic technique used in this study depends on the reproduction of a sharp image
of the deformed material along the flanks of the crack to make it possible to locate the crack-tip
image and, consequently, to determine the crack-length with an acceptable degree of resolution.
Since it is certain that in ductile materials, a sizable plastically deformed zone accompanies the
crack during its propagation, especially in plane stress applications (see Fig. 4), this zone can be
utilized as an accurate crack-length indicator. An example of this deformed zone is shown in Fig.
S. It can be seen that the interface between the two fracture surfaces (the crack) is not present
along with this image. As the crack increases in length, leading to a higher crack opening
displacement, the separation of the fracture surfaces becomes visible as a dark line within the
deformed zone. This is shown in Fig. 6.

The testing configuration included a camera and a continuous light source positioned on onc
side of the specimen. The camera was triggered by an electrical pulse sent by a microcomputer
that kept track of the elapsed number of cycles. Also, a number of shutter speeds, aperture settings,
developing solutions, processing times and film types were experimented with to achieve the best
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Fig. 2. Test specimen in the present study.

reproduction of this shear zone; these parameters are fully described in ref. [23].

A transmitted-light microscope equipped with a horizontal travelling table was used to
determine the length of the image of the plastically deformed zone. The measurements were made
by a digital micrometer having a resolution of 1 um and transferred, after suitable interfacing, to
a microcomputer for acquisition and subsequent analysis (see Fig. 7).

The error in these measurements was determined by comparing an actual crack-length,
measured directly on the specimen’s surface, and the length of its corresponding shear zone. This
comparison, which was made in the cases of 1 x and 2 x magnifications (sec in Tabiz 1) indicated
that the errors associated with the 2 x magnification, which was adopted throughout the test
program, were lower. The region of interest used for recording the shear zone was limited to the
central 28 mm on the 36 mm frame. Using a 2 x magnification, this meant that a maximum of
14 mm of crack growth was photographed in any test.

All the 180 tests carried out in this study were performed on a closed loop, servo-hydraulic
Material Test System (MTS-880) capable of controlling loads within 0.2%.

Based on ASTM E647 recommendations, the initial crack-length, @, was chosen to be
10.00 mm; however, the crack-lengths were recorded from a length of 9.00 mm onwards. The final
crack-length (a,) for the purposes of this test program was limited to 23 mm measured from the
center line of the test specimen. The loading parameters were then selected so that the crack
transition from the normal mode to the shear mode could not occur before the crack reached this
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specified length, i.e. 23 mm. This condition was imposed on the loading parameters in order to
avoid the problem of defining the crack-length in the shear mode.

Tests were executed at three different stress ratios R; R = Pin/Ppew Where Py, is the minimum
load level and P,,, is the maximum load level. The loading sequence for fatigue pre-cracking and
the three test load conditions are detailed in Tables 2 and 3, respectively. A frequency of 10 Hz
and a ramp waveform were selected for the loading cycle.

Figure 8 is an example of the results obtained in this test program showing the progress of
the crack length at different loading cycles for one of the loading conditions.

EXPERIMENTAL RESULTS

As mentioned in the previous section sixty specimens were tested for three stress levels and
crack-length (a) versus number-of-cycles (N); data was recorded from a length of 9 mm to a length
of 23 mm. It may be recalled that the initial crack-length chosen for this test program was 10 mm
and not 9 mm. Data between 9 mm and 10 mm will be used for future work on short crack.
behaviour and the coinparison between the theoretical probability crack-length versus number of
cycles data. The experimental data will be made from the initial crack-length of 10 mm onwards.
Crack-growth data (a vs N) for the three stress conditions is shown in Figs 9-11.

The next step in the analysis is the selection of the width-of-crack state for producing
experimental data suitable for comparison with that generated by the mathematical model [15].
As can be seen from Table 1, the maximum error between the shear zone recorded on film and
the crack-length measured from the specimen was estimated to be 0.163 mm. Using a conservative
approach, the maximum error was assumed to be 0.2 mm and this was considered to be the state
width.

| 2a
|
|
V!'
L

i

7.144 (O/Sﬂ)l I

4.762 (3/18) dia.
DRILLED

9.56286 (3/8)
a,

2.301(3/32) milled

(+]
60 broached

14.288 (9/186)

Scale 8:1

All Dimensions in MM (inches)

Fig. 3. Crack initiating notch.
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Table 1. Comparison of the actual crack-length with the length measured from the film (all dimensions in mm)

Measured value Magnification Corrected Actual Error
(M) (m) ©) 4) (4-C)
(C = M/m)
4.882 1.058 4612 4831 0.218
8.047 1.045 7.700 1.755 0055
11.624 1.045 11123 11.206 0.083
18.855 1.045 18.043 18.082 0.039
8.208 2.000 4104 4.202 0.098
17.028 2.000 8.514 8.677 0.163
15950 2,000 7975 8.042 0.067
17.622 2.000 8.846 8.924 0.078
19.841 2.000 9.920 9.956 0.035
23.023 2.000 11.501 11.592 0.090
26.161 2.000 13.080 13.153 0072
29.803 2.000 14,901 15.018 0.116
31.623 2.000 15.811 15.892 0.081
Table 2. Loading sequence for fatigue pre-cracking (all loads in kN)
Load level till Load level till
crack was generated crack reached 7.5mm
(20 Hz) (20 Hz)
Test
Condition P P AP Fa P &b
I 2595 8.30 17.65 26.55 13.55 13.00
I 29.30 1.70 21.60 2480 10.65 14.15
m 26.30 1.70 18.60 21.50 7.30 14.20
Table 3. Test load conditions (all loads in kN)
Test load level
(10 Hz)
Test
Condition Fou Pow & A
I 2.7 13.68 9.11 0.6
Il 2225 11.13 1112 0.5
1 15.19 6.08 9.1 04
Shear Zone

(A)
astic Zone
# converted to
Shear Zone
(8)

(C)

Fig. 4. Zonc of plastic deformation in the vicinity of the fatigue crack{3t].
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Fig. 1. Direction of crack with respect to the grain structure.



H. GHONEM and S. DORE

Fig. 5. Photograph of the shear zone accompanying the crack.
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Fig. 6. Photograph of the shear zone with a visible separation of the crack surfaces.
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1. Crack length = 9.495 mm 2. Crack length = 10498 mm
Number of cycles = 6380 Number of cycles = 15510
3. Crack length = 10912 mm 4. Crack length = 12031 mm
Number of cycles = 18960 Number of cycles = 25360
5. Crack length = 12.630 mm 6. Crack length = 13.000 mm
Number of cycles = 28210 Number of cycles = 29800

Fig. 8 Crack evolution as recorded from specimen number 1 subjected to Test Condition-11 (Magnification
10X).
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Fig. 7. Schematic of the camera-triggering and the crack-length measuring circuits.
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2 L] 10 14
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Fig. 9. Crack-length vs number of cycles data from 60 specimens for Test Condition I.

For a state width of 0.2 mm, the zone between 10 and 10.2 mm corresponded to an initial
crack state (rp) of 51 and the zone between 22.8 and 23 mm to a final crack state (r/) of 115,
leading to a total of 65 crack states. Similar to the approach discussed in ref [15], the number
of cycles spent by a crack in each of these 65 states was calculated by interpolition of the a vs N
data. Thereupon, for all the stress levels, the interpolated values for each state ia each of the sixty
specimens was arranged in an ascending order. The lowest number of cycles was assigned a
probability of:

Pi)=1-(x/60) ; x=1
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Fig. 10. Crack-length vs number of cycles data from 60 specimens for Test Condition 1I.
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Fig. 11. Crack-length vs number of cycles data from 60 specimens for Test Condition IIL.
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and so on up until the highest number of cycles whose corresponding probability value was:
P(i)=1-(x/60) ; x=60.

A probability range of 0.9-0.1 was selected for comparison of the experimental and the
theoretical data. The curves obtained experimentally are plotted in Figs 12-14 wnth the probability
values having decrements of 0.1.

In these figures it is observed that the widest scatter band is associated with the test condition
that produced the smallest mean crack-growth rate, Test Condition 111, while the narrowest scatter
band is associated with the Test Condition II in which the mean crack growth rate is the highest.
This is due to the fact that when loads are high, the influence of the microstructure on crack
propagation is diminished so that the degree of scatter of the a vs N sample curves, in relation to
the mean growth curve, tends to be limited. Similar observations were made by Yang et al.[7]
and this is perceptible in Fig. 15.

THEORETICAL RESULTS

Firstly, the continuum growth law to be utilized in the mathematical model was arrived at
by investigating a number of crack growth equations with known material constants which
recognize the effect of the stress ratio. Forman’s equations[13,24] and the equation derived by
Hardath er al.[25] fall into this category.

Forman’s equation is generally written as:

da __ Caky
dN " (1 - RK. - AK

(6)

where a is the crack-length, N is the number of cycles, K is the stress intensity factor range, X, is
the critical stress intensity factor, R is the stress ratio and C and n are material constants.

P=0.5
2a | l P=0,1
I

L

CRACK LENGTH,

i i i i i
10 14 i8

NUMBER OF CYCLES X 10%

Fig. 12. Experimental constant-probability crack growth curves generated for Test Condition I.
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Fig. 13. Experimental constant-probability crack growth curves generated for Test Condition IL.
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Fig. 14. Experimental constant-probability crack growth curves generated for Test Condition 11,
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The values of K, C and n for Aluminium 7075-T6 are listed in ref.[13] as:

K¢ = 68 Ksi-in! (74 M Pa-m'

C =5 x 1073 U.S. Customary Units
= 1.63 x 107" SI Units

n =3

and in ref.[24] as:

K¢ = 40 Ksi-in! (44 MPa-m')

C =213 x 1073 US. Customary Units
= 1.60 x 1078 SI Units

n =321

The equation derived by Hardarth et al.[25] is:

da =
3y = CAKy ™
T = Keﬂ'
where K = ——( ~Kem )2 ®)
K;
and Ken = (Smax — S0) Jma F 9

Smax is the maximum stress, s is the crack opening stress, \/za F is the stress intensity parameter
for specimen configuration, K., is the maximum stress intensity factor, K is the fracture parameter
[81 Ksi-in' (89 M Pa-m")], C and n are material parameters.

C = 3.83 x 1078 SI Units

L 4
(o}
-
n=23.17.
X
¢ e}
.
>
0 F
L
o]
4 14 |
w
[/}
<
=}
2

CRACK LENGTH, MM

SCATTER RANGE (Ng 31-Ng_.g)-

Fig. 15. Variation of the scatter range with crack length for the three Test Conditions.
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Of the above two laws, the one provided by Forman ef al.[13] was selected because it is
based on data obtained from different laboratories as opposed to the equation of Hudson er al.[24]
that was derived after correlation with one set of experimental data. The growth law of Hardarth
et al.[25] was also not utilized because the present mean experimental growth rate was different
from that predicted by the law, by an order of magnitude for all the three stress levels.

Having defined the continuum growth law and the corresponding material constants, the six
constants C,, C,, C;, n,, ny, n; were next calculated by obtaining their converged values using
Newton-Raphson’s method.

The six constants for each load condition are:

I ) m
G 0015127 0.010064 0010105
G 19371 x 1076 3.4055 x 1076 1.9758 x 1076
G 1.5940 x 10¢ 1.0888 x 108 23151 x 108
n 0.8000 0.7957 0.8514
ny 1.4946 14991 13501
ny —0.7000 —0.6820 ~0.8537

Following the analysis presented in ref. [15] the theoretical probability curves were plotted making
use of these constants, in Figs 16-18.

The percentage error of the number of cycles is plotted in Figs 19-21. The average value off
the absolute errors was found to be 7%, 5% and 8% for the ’, II and the III load conditions,
respectively.

A remark is warranted on the six constants that characterize the crack growth scatter.
Though these constants depend on the load parameters, no attempt has been made to derive an
explicit relationship. In fact, there is no need for an explicit relationship since they are computed
directly from the continuum growth law.

CONCLUSIONS

(1) The mathematical model developed here provides a physical description for fatigue crack
propagation as well as capability of predicting crack growth scatter at different stress levels.
While the model uses the crack growth data from a continuum law as its input, it does not
depend on a specific law. The only requirement is that such a law must be a correct
representation of the mean growth curve. The model has been validated for two aluminium
alloys Al 2024-T3 and Al 7075-T6 subjected to four different stress levels and is in the process
of being applied to steel and titanium alloys.

(2) The scatter data recorded for the second load condition (AP = 11.12 kN, P,,, = 22.25kN)
of the experimental program has been observed to be the least widespread when compared
with that obtaired from other load conditions with lower values of AP. This can be attributed
to the following phenomenon. The crack transition from a specific state is governed by a
critical threshold energy at the crack tip. When such a threshold is satisfied in one cycle or
an accumulation of several cycles, depending on the load condition and crack-geometry, the
crack tip can then advance from its present state to the following one. iIence for larger loads
and longer crack-lengths, the probability that this propagation threshold is satisfied increases
rapidly with the number of elapsed load cycles while, for smaller loads and shorter crack-
lengths, the probability of discrete crack growth advancement increases gradually. In this
hypothesis the degree of scatter in achieving the required threshold energy reflects on the
degree of scatter of crack growth. Fractographic analysis of fracture surfaces shows that, at
the same crack-length, more striations per unit distance are present along the fracture surface
of specimens subjected to a large load level (Test Condition II, see Fig. 22b) than in the
specimens subjected to a lower load level (the Test Conditions I and III, see Figs 22a and
22¢). It is known that ductile fracture striations are formed due to a change in the orientation
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Fig. 24. (a) — (b)
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of the fracture surface along a specific slip plane[26, 27]. Therefore, a denser striation pattern
is observed at loading conditions associated with higher growth rates because numerous
orientation changes take place in a unit distance of the fracture surface. It follows that the
energy required for these changes is achieved more frequently under these conditions. Using
this analogy at a macroscopic level, it can be said that the crack tip propagation threshold
is also achieved more often. These observations may act as another factor that substantiate
the fact that larger loading conditions result in a smaller degree of crack-growth scatter.

The changes in the orientation of the fracture surface along a specific slip-plane are
reflected as the waviness of the crack path on the specimen surface. This is shown in Figs
23(a) and (b). In view of the explanation given previously, increased waviness of the crack
path (measured in terms of the horizontal distance required for the crack propagation direction
to change) is related to increase in the externally applied load levels and thus the degree of
crack growth scatter at a particular load level could be related to the wavines of the crack
path. Quantification of this dependence has not been attempted here.

The phenomenon of crack-tip branching was also observed. Typical examples are shown
in Fig. 24(a) and (b). While the existence of branching certainly contributes to the degree of
crack growth scatter due to random loss of propagation energy at the crack tip, the extent
of this contribution is not known. Both the effect of the waviness and that of the crack-tip
branching on the degree of crack growth scatter are under study by the authors.

(3) The use of the present model is directed towards two applications. The first is the constant
amplitude loading which, while representing a simple load spectrum, does occur in practice;
e.g. pressurization cycles in transport aircraft cabins, rotating bending stresses in generators,
thermal stress cycles in pressure vessels. This application has been examined in this paper.
The second application is the variable amplitude loading which could be a two-step load
sequence (low-high, high-low) or a spectrum of random loads. Variable amplitude loading is,
however, a complex problem due to the fact that the crack tip damage per cycle under such
loading is not only controlled by the stress amplitude of the current cycle, but also by the
preceding load history. It is generally agreed[28-30] that this dependence is only transient
in nature and should not exist after a certain duration of cycling.

Reflecting this concept on the fundamentals of the constant-probability crack growth
model, one observes two arecas where modifications can be made to account for the history
dependence of the crack growth process due to load changes. The first, is the assignment of
appropriate mathematical functions for the variables B, K and I, to take this phenomenon
into consideration. The Markovian approach in the model is not violated because even though
the crack tip conditions depend on the loading history, the propagation process is affected
only by the present crack tip conditions. On the basis of the existing works on variable
amplitude loading, it can be said that the mathematical functions cannot be arrived at by
simple superimposition. However, quantification of the crack growth rates for variable
amplitudes, even in the deterministic sense has not been accomplished so far. Only if that is
achieved, will modifications for B, K and I, be possible.

The other area where modification must be made is the consideration of initial crack-
length (a;). In the present modci, a, was a constant as a result of an imposed experimental
condition. Thus, the model provides a distribution of the number of cycles required for
a crack to reach a specified discrete state from a,. No attempt has been made to consider
an initial crack-length distribution and the manner in which it will affect the constant
probability curves. Attempts to interpret the constant-probability growth curves in terms of
a distribution of crack states after a specified number of cycles have elapsed from the instant
the crack reached a, were also not made. Only this type of a distribution is useful for variable-
amplitude loading application because the history of the fracture process is described in terms
of the number of cycles. The recognition of this distribution is an important step since it
represents the initial crack-length configuration which is a necessary boundary condition for
the new load spectrum.
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